Math 671: Level set methods

Variational level sets in shape reconstruction from
unorganised data sets

Industrious Pencil-Pushing Pixie

215¢ December, 2005

Contents

1 Introductory ideas 1

2 Arriving at an inexpensive distance function 2
2.1 Brute force approacho 3
2.2 Viscosity solution of Eikonal equation 4

3 Evolving the level set 6

4 Potential improvements 8

1 Introductory ideas

Following in a vein similar to [Zhao et al., 2001], the goal of this project is to develop fast
and accurate schemes to reconstruct shapes from unorganised data-sets using variational
level set methods. The approach followed is based primarily on the gradient-flow scheme
derived in class from variational considerations, and uses implementation details borrowed
from [Zhao, 2004, Osher and Fedkiw, 2002]. Most notably, unlike the convection model fol-
lowed in [Zhao et al., 2001], this current treatment also includes the curvature-based term
(on the right hand side of Eq. (6)) neglected in their earlier work.

Given an arbitrary set S = {points, curves, surfaces in N dimensions}, the basic problem
at hand is the determination of an N dimensional surface I' which minimises the error defined
by

E= /Fd(a:)ds, (1)

where d(x) is the distance function d(x, S), which is the closest distance to the data-set S
from a point . Assuming I' to be the zero level set of a function ¢, i.e.,

I'=A{z: o(x) =0}, (2)

it is clear from level set theory that the error now becomes

E= / 1)V (9)]5()de, 3)

where 4(+) is Dirac’s delta function.

As detailed in class (on 11/22/2005), in order to arrive at the gradient flow law, we first
differentiate Eq. (3) with respect to time,

= [(d<m>|v<so>\5/<so>sot+d<m>a<¢>

Integrating by parts,

£~ [(a@1vse) - v (d@it) g &)) e

9 _ —0E .
o= e where ¢

is a variation of -, not the delta function. Recalling that % =< ‘;—i, ¢ >, we arrive at the
following gradient flow law for ¢.

where x is the curvature. In order to have gradient flow, we require

% V) V(e) = da) V(o)) (6)

It is Eq. (6) that we aim to solve to determine ¢, and hence T

2 Arriving at an inexpensive distance function

The first step of this solution process involves the computation of the distance function,
d(x). In the following, I briefly detail the methods I tried, and the algorithm used in
the final implementation. Summaries of existing schemes can be found in [Mauch, 2000,
Russo and Smereka, 2000], for example.

Figure 1: Distance function contours for Figure 2: Distance function contours for
an arbitrary set of 5 points. S being the diagonal.

2.1 Brute force approach

As a first pass, we return to the basic definition of the distance function,

d(x) = min |z — y|. (7)

yel

In order to obtain a field over the domain 2, for every point « in §2, the algorithm determines

its distance to every point in S, and returns the minimum of these values. The following is
the relevant MATLAB code snippet.

% A very simple distance function evaluator from a point x to a given
% set of points S.

function dmin = distance _function (X,S)

dmin = inf;

for i=1:size(S,1)

dx = abs(S(i,1) —x(1));
dy = abs(S(i,2) —x(2));
d = sgrt(dx2+dy"2);

if d<dmin dmin=d; end
end

Figs. (1) and (2) show the results of a couple of numerical examples. In both cases, the
width and height of the domain are unity, and the mesh refinement, A = 0.01. The points
in S are denoted by the green squares, and the contours give the distance function over (2.

If we are dealing with M pieces of data in S, and N nodes in each spatial dimension, in
2D, we have a method that is O(M N?). This is clearly not optimal, so we turn to the next
less expensive method, which is what is used in the current final implementation.

2.2 Viscosity solution of Eikonal equation

The following implementation is based primarily on the details presented in [Zhao, 2004]. A
Gudinov upwind difference scheme is used to compute the viscosity solution u(x) > 0 for
the Eikonal equation,

Vu(z)| =1,z €9
w(@) =0,z €T (8)

As shown in class (on 10/11/2005), a field u(x) that satisfies this differential equation and
boundary condition is a measure of how far you are from a given curve I'; and is the required
distance function.

The algorithm is briefly described and implemented in 2D, but can be easily extended to
higher dimensions. In the following, & is the mesh size, z; ; is an arbitrary grid point and ufj
denotes the numerical solution at z; ;. The discretisation used for Eq. (8) is the following
upwind scheme,

[(ul s =l TP+ [l =l YTP=hAVi=2,...,N-1,7=2,...,N—1, (9)

ymain

where ul, .. = min(u}_, ;,uly, ;) and . = min(u};_;,ul;,). One sided differences are
used at the boundaries. The values of u(x) are initialised to 0 for & € I', and large positive
values elsewhere. (The current implementation does not handle interpolation of initial values
close to grid points, but this can be added). Then, at each z; ; (not fixed initially), a solution
u of Eq. (9) is found (using the unique solutions from [Zhao, 2004]). u}'; is updated to be the
minimum of the previous u?] and u. Gauss-Seidel iterations with alternative sweep ordering
are used to solve for the field everywhere in the domain. The particular sweep orderings
used are indicated in the MATLAB code snippet below. An arbitrary final sweep is used to
ensure convergence.

% Perform the Gauss —Seidel iterations

% First pass —— Lower left to upper right
for i=l:nodey
for j=l:nodex
seidel
end
end

% Second pass — Lower right to upper left
for i=l:nodey
for j=nodex: -1:1
seidel
end
end

% Third pass — Upper right to lower left

for i=nodey: -1:1
for j=nodex: -1:1
seidel
end
end

% Fourth pass — Upper left to lower right
for i=nodey: -1:1
for j=l:nodex
seidel
end
end

% Fifth pass, to guarantee convergence.
% Arbitrarily chosen to be lower left to upper right

for i=1l:nodey
for j=l:nodex
seidel
end
end

The actual calculations carried out are detailed in the following subroutine.

% The Gauss—Seidel loop

% Only carry it out if the node hasn't been set initially
if ~(isinfound([i,j],found))
if (i >1)=*({ <nodey))
uymin = min(u@i —1,)),u(i+1,)));
elseif (i==1)
uymin = u(2,j);
else
uymin = u(nodey —1));
end

if (§ >1)=*(<nodex))

uxmin = min(u(i,j =1),u(i,j+1));
elseif (j==1)

uxmin = u(i,2);
else

uxmin = u(i,nodex —1);
end

if (abs(uxmin —uymin) >h)

ubar = min(uxmin,uymin)+h;
else

ubar = (uxmin+uymin+sqrt(2 *h"2 —(uxmin —uymin)~2))/2;
end

u(i,j)=min(u(i,j),ubar);
end %if

)

Figure 3: Distance function contours for Figure 4: Distance function contours for
an arbitrary set of 5 points. S being the diagonal.
mﬁ u m@ u
20 4‘0 Gb 80 100 20 40 Gb 80 100
Figure 5: Distance function contours for a Figure 6: Distance function contours for
set of points forming a central circle. an arbitrary set of 5 points forming a non-

convex polygon.

In order to check the distance function evaluator, several numerical examples were run.
Figs. (3-6) show the results for a few cases. In all cases, the width and height of the domain
are 10, and the mesh refinement, h = 0.1. The points in S are denoted by the green squares,
and the contours give the distance function over €).

3 Evolving the level set

Now that we have determined the distance function d(x) all over), we return to the level
set equation, Eq. (6). The gradient terms, V(+), are computed using simple finite different
schemes of varying orders of accuracy. Based on the size of the stencil used, the original data,
dl!; or ¢}'; (the numerical approximations to d(z) and (x) at x; ;) are suitably extended by
extrapolation at the boundaries. The following MATLAB code snippet shows the simplest
of these schemes.

% Determine the gradient using the stencil
% |

% —u—

% |

% u is the field extended by one node at the boundary

for i=l:nodey
for j=l:nodex
gradu _y(i,j) = (u(i+1,)) —u(—1j))2 =h);
gradu _x(ij) = (u(ij+1) —u@ij —1)/2 ~*h);
norm _gradu(i,j) = sqrt (gradu X(i,j)"2+gradu y(i,))°2);
end
end

Before we start the process, we need to determine a suitable initial value of the level set
function, ¢(x). This implementation executes the simplest possible idea by first determining
the bounding box of the points in S, and making sure the zero level set of p(x) is that
bounding box. The following is the relevant MATLAB code.

% Some random points
S=[4.,2,; 3.,6.; 5.,8.; 8.,6.5; 7.,2.];

%Determine bounding box of point for a decent initial guess a t the level
% set function
bbox = zeros(2,2);
bbox(1,:) = min(S) —h;
bbox(2,:) = max(S)+h;
phi = ones(nodey,nodex);
for i=1:nodey
for j=l:nodex
if (pos(i,j,1) >bbox(1,1)&pos(i,j,1) <bbox(2,1)
& pos(i,j,2 >bbox(1,2)&pos(i,j,2) <bbox(2,2))
phi(ij)= -1;
end
end
end

Fig. (7) shows the original level set function () for an example computation involving
the five points denoted by green squares in Fig. (3). Fig. (8) shows the corresponding zero
level set. The algorithm then reinitializes ¢, retaining the bounding box as I', to a signed
distance function and uses that as the initial value. This choice can be much more optimal,
as in [Zhao et al., 2001].

Deriving from published implementations of the ideas in [Osher and Fedkiw, 2002], we
proceed to solve Eq. (6) using standard schemes. With d(x), and V(d) found and ¢(x)
initialised to a signed distance function resulting in the bounding box as its zero level set,
the following algorithm is applied to evolve () in time.

7

100

90

80

70F

60

50

401

30r

-1l
150

20

150
10

0 o 16 2‘0 ?:0 4‘0 5‘0 6‘0 7‘0 éO 9‘0 160
Figure 7: Original level set function, p(x). Figure 8: The original zero level set, I'.

e Determine an appropriate Euler time-step size, dt from the values of the vector field
contributions (V(d),, V(d),), curvature contributions (d(x)) and mesh size, to ensure
stability:.

e Set t =0
e Loop over the following for a set number of iterations

o fgrad = Forcing contribution from the vector field, V(d)
o fecurv = Forcing evolution from curvature-based force

o Evolve the level set function as ¢ = ¢ + (feurv — fgrad)dt
ot=t+dt

Additionally, we reinitialise ¢ to a signed distance function at a certain frequency of iterations
so that the Gudinov scheme used to implement the above pseudocode remains accurate. Figs.
(9-12) show some representative numerical examples.

4 Potential improvements

Currently, the implementation starts the process with the most basic selection of the level set
function ¢(x); one which defines the bounding box of the given set of points S. However,
the method can be made much more efficient if we start with a more precise guess, such
as one obtained from the the tagging scheme presented in [Zhao et al., 2001], which is only
O(Nlog(N)) in computational expense. Additionally, the current the process runs for a
preset number of iterations based on crude numerical experimentation and visual inspection.
This can be modified by calculating an error measure after each iteration, and stopping the
process when it falls within the required tolerance.

When a point on S doesn’t lie on a grid point, we need to interpolate the initial values
of the distance function appropriately before solving the Eikonal equation, Eq. (8). This is

8

100 F

90

80

701

60

50

40t

301

20+

10

L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Figure 9: This figure shows snapshots of
evolution of the zero level set at a cer-
tain frequency of iterations. The problem
at hand is to determine a curve encom-
passing those 5 points marked by green
squares. The results shown here are for
a scheme reproducing what was done in
[Zhao et al., 2001], which uses only the
convection term. The curvature contribu-
tion is absent.

100 F

Ely

80

701

60

50+

40-

301

20+

10-

.
10 20 30 40 50 60 70 80 90 100

Figure 11: This is similar to Fig. (10),
but there are many more points that the
curve is aiming to wrap. The final zero
level set curve I' is also denoted by a blue
to delineate it from the numerous green
squares.

L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Figure 10: This figure shows the cur-
rent algorithm incorporating the curva-
ture term for the same problem. The
snapshots are shown at the same fre-
quency of iterations, and the zero level set
seems to evolve slightly faster toward the
points. In these plots, the initial curve is
blue, and the red curves are subsequent
iterations.

40

20

=20 -
120

Figure 12: This figure shows the final
value of p(x) corresponding to the last
zero level set curve I' in Fig. (11).

currently not done, and the issue is avoided completely by suitably picking S such that all the
points in it fall at grid points. This needs to be changed. With all these refinements worked
in and functioning, it will be interesting to try other (potentially cheaper) schemes (such as
the methods described in [Mauch, 2000, Wenwang, 2003]) for distance function evaluation
and only local computation (within a narrow band of the zero level set) as described in
[Peng et al., 1999], before moving the implementation over to 3D.

References

[Mauch, 2000] Mauch, S. (2000). A fast algorithm for computing the closest point and
distance transform. Technical report, Caltech ASCI technical report 2000.077.

[Osher and Fedkiw, 2002] Osher, S. and Fedkiw, R. (2002). Level Set Methods and Dynamic
Implicit Surfaces. Springer.

[Peng et al., 1999] Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. (1999). A
PDE-based fast local level set method. Journal of Computational Physics, 155(2):410 —
38.

[Russo and Smereka, 2000] Russo, G. and Smereka, P. (1 Sept. 2000). A remark on com-
puting distance functions. Journal of Computational Physics, 163(1):51 — 67.

[Wenwang, 2003] Wenwang, Z. (2003). The fast sweeping method of Eikonal equations and
its parallelism. Master’s thesis, Royal Institute of Technology.

[Zhao, 2004] Zhao, H.-K. (2004). A fast sweeping method for Eikonal equations. Mathemat-
ics of Computation, 74(250):603 — 627.

[Zhao et al., 2001] Zhao, H.-K., Osher, S., and Fedkiw, R. (2001). Fast surface reconstruc-
tion using the level set method. Proceedings IEEE Workshop on Variational and Level Set
Methods in Computer Vision, pages 194 — 201.

10

