
Biomechan Model Mechanobiol manuscript No.
(will be inserted by the editor)

H. Narayanan · E. Arruda · K. Grosh · K. Garikipati

Biological growth: Reaction, transport and mechanics
Theory and Numerical Models

“Tact is the knack of making a point without making an enemy” (v0.7)

Received: date / Accepted: date

Abstract In this paper, we address some modelling issues
related to biological growth. Our treatment is based on a
recently-proposed general formulation for growth (Journal
of the Mechanics and Physics of Solids, 52, 2004, 1595–
1625) within the context of open system continuum thermo-
dynamics. We aim to enhance this treatment by making it
more appropriate for the biophysics of growth in soft tis-
sue, specifically tendon. This involves several modifications
to the mathematical formulation to represent the reactions,
transport and mechanics, and their interactions. We also re-
formulate the governing differential equations for reaction-
transport to represent the incompressibility constraint on the
fluid phase of the tissue. This revision enables a straight-
forward implementation of numerical stabilisation for the
hyperbolic, or advection-dominated, limit. A finite element
implementation employing a staggered scheme is utilised to
solve the coupled nonlinear partial differential equations that
arise from the theory. Motivated by our experimental model,
an in vitro scaffold-free engineered tendon formed by self-
assembly of tendon fibroblasts (Calve et al, 2004), several
numerical examples are solved in this context demonstrating
biophysical aspects of growth, and the improved numerical
performance of the models.
Keywords Soft Tissue · Porous Media · Enzyme Kinetics ·
Advection-Diffusion · Incompressibility · Stabilisation

1 Introduction

Growth involves the addition or depletion of mass in biolog-
ical tissue. In biological systems, growth occurs in combi-
nation with remodelling, which is a change in microstruc-
ture, and possibly with morphogenesis, which is a change
in form in the embryonic state. The physics of these pro-
cesses are quite distinct, and for modelling purposes can,
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and must, be separated. Our previous work (Garikipati et al,
2004), upon which we now seek to build, drew in some mea-
sure from Cowin and Hegedus (1976); Epstein and Maugin
(2000); Taber and Humphrey (2001) and Kuhl and Stein-
mann (2003), and was focused upon a comprehensive ac-
count of the coupling between transport and mechanics. The
origins of this coupling were traced to the balance equations,
kinematics and constitutive relations. A major contribution
of that work was the identification and discussion of sev-
eral driving forces for transport that are thermodynamically-
consistent, in the sense that specification of these relations
does not violate the Clausius-Duhem dissipation inequality.
Now, we seek to restrict the range of physically-admissible
possibilities in order to gain greater physiological relevance
for modelling growth in soft biological tissue. In addition,
these refinements result in advection-diffusion equations for
mass transport, which require numerical stabilisation in the
advection-dominated regime (the hyperbolic limit). We draw
upon the enforcement of the incompressibility limit for the
fluid phase to facilitate this process. Below, we briefly in-
troduce each aspect that we have considered, but postpone
details until relevant sections in the paper.

– For a tissue undergoing finite strains, the transport equa-
tions can be formulated, mathematically, in terms of con-
centrations with respect to either the reference or cur-
rent (deformed) configurations. However, the physics of
fluid-tissue interactions and the imposition of relevant
boundary conditions is best understood and represented
in the current configuration.

– The state of saturation is crucial in determining whether
the tissue swells and shrinks with infusion/expulsion of
fluid.

– The fluid phase, whether slightly compressible or incom-
pressible, can develop compressive stress without bound.
However, it can develop at most a small tensile stress,
having implications for the tissue’s stiffness and strength
in tension as against compression. It also has implica-
tions for void formation through cavitation.

– When modelling transport, it is common to assume Fick-
ean diffusion (Kuhl and Steinmann, 2003). This requires
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that a mixing entropy be defined via the configurations
available to molecules of the diffusing species at fixed
values of a macroscopic variable, such as concentration.
With regard to the extra-cellular fluid (ECF) or the chem-
ical solutes dissolved in it, the state of saturation directly
influences this mixing entropy.

– If fluid saturation is maintained, void formation in the
pores is disallowed under an increase in the pores’ vol-
ume. This has implications for the fluid exchanges be-
tween a deforming tissue and a fluid bath with which it
is in contact.

– Recognising the incompressibility of the fluid phase, it
is common to treat soft biological tissue as either incom-
pressible or nearly-incompressible (Fung, 1993). At the
scale of the pores (the microscopic scale in this case),
however, a distinction exists in that the fluid is exactly
(or nearly) incompressible, while the solid forming the
porous network is not.

– In Garikipati et al (2004), the acceleration of the solid
phase was included as a driving force in the constitutive
relation for the flux of other phases. However, accelera-
tion is non-objective and its use in constitutive relations
is inappropriate.

– Chemical solutes in the ECF are advected by the fluid ve-
locity and additionally undergo transport under a chem-
ical potential gradient relative to the fluid. In the hy-
perbolic limit, where advection dominates, spatial insta-
bilities are obtained in numerical solutions of the trans-
port equation (Brooks and Hughes, 1982; Hughes et al,
1987). Numerical stabilisation of the equations is inti-
mately tied to the mathematical representation of fluid
incompressibility.

These issues are treated in detail in relevant sections of
the paper, which is laid out as follows: Balance equations
and kinematics are discussed in Section 2, constitutive rela-
tions for reactions, transport and mechanics in Section 3, and
numerical examples are presented in Section 4. Conclusions
are drawn in Section 5.

2 Balance equations and kinematics of growth

In this section, the coupled, continuum balance equations
developed from physical principles governing the behaviour
of growing tissue are summarised and specialised as outlined
in Section 1. For detailed continuum mechanical arguments
underlying the equations, the interested reader is directed to
Garikipati et al (2004).

The tissue of interest is an open subset of R
3 with a

piecewise smooth boundary. At a reference placement of the
tissue, Ω0, points in the tissue are identified by their refer-
ence positions, X ∈ Ω0. The motion of the tissue is a suffi-
ciently smooth bijective map ϕ : Ω 0 × [0,T ] → R

3, where
Ω 0 := Ω0∪∂Ω0. At a typical time t ∈ [0,T ], ϕ(X , t) maps a
point X to its current position, x. In its current configuration,
the tissue occupies a region Ωt = ϕ t(Ω0). These details are

depicted in Figure 1. The deformation gradient F := ∂ϕ/∂X
is the tangent map of ϕ .
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Fig. 1 The continuum tissue with growing and diffusing species.

The tissue consists of numerous species, of which the
following groupings are of importance for the models: A
solid species, consisting of solid collagen fibrils and cells,1
denoted by c, an extra-cellular fluid species denoted by f
and consisting of water bound to proteoglycans, and solute
species, consisting of precursors to reactions, byproducts,
nutrients, and other regulatory chemicals. A generic solute
will be denoted by s. In what follows, an arbitrary species
will be denoted by ι , where ι = c, f,s.

The fundamental quantities of interest are mass concen-
trations, ρ ι

0(X , t). These are the mass of each species per unit
system volume in Ω0. Formally, these quantities can also be
thought of in terms of the maps ρ ι

0 : Ω 0 × [0,T ] → R, upon
which the formulation imposes some smoothness require-
ments. By definition, the total material density of the tissue
at a point is a sum of these concentrations over all species
∑
ι

ρ ι
0 = ρ0. Other than the solid species, c, all phases have

mass fluxes, Mι . These are mass flow rates per unit cross-
sectional area in the reference configuration defined relative
to the solid phase. Except for the fluid, f, all species have
mass sources/sinks, Π ι , encapsulating the complexity of the
biochemistry.

2.1 Balance of mass for an open system

As a result of mass transport and inter-conversion of species
introduced previously, the concentrations, ρ ι

0, change with
time. In local form, the balance of mass for an arbitrary
species in the reference configuration is

∂ρ ι
0

∂ t
= Π ι −DIV[Mι ], ∀ ι , (1)

recalling that, in particular, Ms = 0 and Π f = 0. Here, DIV[•]
represents the divergence operator in the reference configu-

1 At this point, we do not distinguish the solid species further. This
is a good approximation to the physiological setting for tendons, which
are relatively acellular and whose dry mass consists of up to 70% col-
lagen.
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Fig. 2 If the pore structure at the boundary deforms with the tissue and
this boundary is in contact with a fluid bath, the fluid concentration
with respect to the current configuration, i.e., ρ f, remains constant.

ration. The functional forms of Π ι are chosen to represent
the underlying biochemistry (physiologically relevant exam-
ples of which are discussed in Section 3.4) and the fluxes,
Mι , are determined from the thermodynamically motivated
constitutive relations described in Section 3.3.

The behaviour of the entire system can be determined
by summing Equation (1) over all species ι . Additionally,
sources and sinks satisfy the relation

∑
ι

Π ι = 0, (2)

which is consistent with the Law of Mass Action for reac-
tion rates (Garikipati et al, 2004) and with mixture theory
(Truesdell and Noll, 1965).

2.1.1 The role of mass balance in the current configuration

Though it is not mathematically incorrect to solve the initial-
boundary-value problem in terms of Equation (1) written out
for the various species, it is important to note that, as soft tis-
sues deform, the current configuration, Ωt , and its boundary,
∂Ωt , change in time. As the pore structure at the boundary
deforms with the tissue, the fluid concentration with respect
to Ωt remains constant if the boundary is in contact with
a fluid bath. Accordingly, this is the appropriate Dirichlet
boundary condition to impose. This is shown in an idealised
manner in Figure 2.

In order to apply boundary conditions (either specifica-
tion of species flux or concentration) that are physical, it is
straightforward to use the local form of the balance of mass
in the current configuration,

dρ ι

dt
= π ι − div[mι ]−ρ ι div[v], ∀ ι , (3)

where ρ ι(x, t),π ι(x, t), and mι(x, t) are the current mass con-
centration, source and mass flux of species ι respectively.
div[•] is the spatial divergence operator, and the time deriva-
tive on the left hand-side in Equation (3) is the material time
derivative, that may be written explicitly as ∂

∂ t |X , implying
that the reference position is held fixed.
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Fig. 3 The kinematics of growth.

2.2 The kinematics of growth

Local volumetric changes are associated with changes in the
concentrations of species. The material of the species swells
with an increase in concentration, and shrinks as its concen-
tration decreases. This leads to the notion of a growth defor-
mation gradient. One aspect of the coupling between mass
transport and mechanics stems from this phenomenon. In the
setting of finite strain kinematics, the total deformation gra-
dient is decomposed into the growth deformation gradient,
a geometrically-necessitated elastic deformation accompa-
nying growth, and an additional elastic deformation due to
external stress. This split is analogous to the classical de-
composition of multiplicative plasticity (Lee, 1969) and is
similar to the approach followed in existing literature on bi-
ological growth (see, for e.g., Taber and Humphrey (2001);
Ambrosi and Mollica (2002)).

The split itself is visualised in Figure 3. Assuming that
the volume changes associated with growth described above
are isotropic, a simple form for the growth deformation gra-
dient tensor is

Fgι
=

ρ ι
0

ρ ι
0ini

1, (4)

where ρ ι
0ini

(X) can be interpreted as an original reference
state where the species would be stress free in the absence
of a deformation, and 1 is the second-order isotropic ten-
sor. Additionally, this being a local definition, the action
of Fgι alone can result in incompatibility. In order to en-
sure compatibility, there is a further geometrically-necessary
elastic deformation F̃

eι
. Thus, the total deformation gradient

F = F
e
F̃

eι
Fgι , (where F

e arises from the external stress) and
internal stresses in the tissue arise due to the compatibility
restoring tensor F̃

eι
.
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2.2.1 Saturation and tissue swelling
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Fig. 4 Only under conditions of fluid saturation does an increase in
fluid concentration cause tissue swelling.

Upon closer examination of the solid phase of the tissue as
a porous medium, it is observed that its degree of saturation
plays a fundamental role in determining whether the tissue
responds by swelling or shrinking to an infusion or expul-
sion of fluid. In particular, the isotropic swelling law defined
by Equation (4) has to be generalised to handle the case in
which the solid phase is not saturated by fluid.

Figure 4 schematically depicts two potential scenarios. If
the tissue is initially unsaturated (as in A), this corresponds
to the fact that, on a microscopic scale, it still contains un-
filled voids. It is thus capable of allowing an influx of fluid,
which tends to increase its degree of saturation (to reach B),
but does not cause the tissue to swell, as the incoming fluid
particles occupy the available spaces. However, if we were
to start observing the tissue at a point where it was initially
saturated (as in C), an increase in the amount of fluid will
result in swelling (as depicted in D), as there are no vacant
locations for the entering fluid particles to occupy. It is this
second case that is modelled by (4).

The measure of saturation we require to augment the
isotropic swelling law to handle the unsaturated case arises
naturally from our primary variables, the concentrations of
the various species, ρ ι

0. These quantities can also be thought
of as the product of the intrinsic density of the species, ρ̃ ι

0,
and the corresponding volume fraction, ṽι . Upon solution
of the mass balance equation (1) for ρ ι

0, the species volume
fractions, ṽι , can be computed since the intrinsic densities
are known material properties. The sum of these volume
fractions is our required measure of saturation, and clearly
cannot exceed unity. We thus proceed to redefine the growth
deformation gradient tensor as follows:

Fgι
=





1, ∑
ι

ṽι < 1
ρ ι

0
ρ ι

0ini
1, otherwise.

(5)

However, it is important to note that under most physio-
logical conditions, soft tissues are fully saturated by the fluid
and can be modelled appropriately by Equation (4).

2.3 Balance of momenta

In soft tissues, the terms that appear on the right hand-side
in Equation (1), the species production rate and flux, are
strongly dependent on the local state of stress. To correctly
model this coupling, the balance of linear momentum should
be solved to determine the local state of strain and stress.

The deformation of the tissue is characterised by the map
ϕ(X , t). Recognising that, in tendons, the solid collagen fib-
rils and fibroblasts do not undergo mass transport, the ma-
terial velocity of this species, V = ∂ϕ/∂ t, is used as the
primitive variable for mechanics. The motion of the remain-
ing species are split into a deformation along with the solid
species, and mass transport relative to it. To this end, it is
useful to define the material velocity of a species ι relative
to the solid skeleton as: V ι = (1/ρ ι

0)FMι . Thus, the total ma-
terial velocity of a species ι is V +V ι . The total first Piola-
Kirchhoff stress tensor, P, is the sum of the partial stresses
Pι (borne by a species ι) over all the species present.2 With
the introduction of these quantities, the balance of linear mo-
mentum in local form for a species ι in Ω0 is

ρ ι
0

∂
∂ t

(V +V ι) = ρ ι
0 (g+qι)+ DIV[Pι ]

− (GRAD [V +V ι ])Mι ,
(6)

where g is the body force per unit mass, and qι is an inter-
action term denoting the force per unit mass exerted upon
ι by all other species present. The final term with the (ref-
erence) gradient denotes the contribution of the flux to the
balance of momentum. In practise, the relative magnitude of
the fluid mobility (and hence flux) is small, so the final term
on the right hand side of Equation (6) is negligible, result-
ing in a more classical form of the balance of momentum.
Furthermore, the absence of significant acceleration of the
tissue during growth implies that the left hand-side can also
be neglected, reducing (6) to the quasi-static balance of lin-
ear momentum.

The balance of momentum of the entire tissue is obtained
by summing Equation (6) over all ι . Additionally, recognis-
ing that the rate of change of momentum of the entire tissue
is affected only by external agents and is independent of in-
ternal interactions, the following relation arises.

∑
ι

(ρ ι
0qι +Π ιV ι) = 0. (7)

2 The amino acids, nutrients and regulators are in solution at low
concentrations, and do not bear any appreciable stress.
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This is also consistent with classical mixture theory (Trues-
dell and Noll, 1965). See Garikipati et al (2004) for further
details on balance of linear momentum, and the formulation
of balance of angular momentum. We only note here that the
latter principle leads to a symmetric partial Cauchy stress,
σ ι for each species in contrast with the unsymmetric Cauchy
stress of Epstein and Maugin (2000).

3 Constitutive framework and modelling choices

As is customary in field theories of continuum physics, the
Clausius-Duhem inequality is obtained by multiplying the
entropy inequality (the second law of thermodynamics) by
the temperature field, θ , and subtracting it from the balance
of energy (the first law of thermodynamics). We assume the
internal energy per unit reference volume of species ι to be
of a sufficiently general form: eι = êι(Feι

,η ι
0,ρ

ι
0), where η ι

0
is the entropy per unit system volume. Substituting this in
the Clausius-Duhem inequality and applying the chain rule
results in a form of this inequality that the specified consti-
tutive relations must not violate. Only the valid constitutive
laws relevant to the examples that follow are listed here. For
details, see Garikipati et al (2004).

3.1 An anisotropic network model based on entropic
elasticity

Each constituent of the tissue has a mass-specific Helmholtz
free energy density, ψ ι . Utilising the material response of a
hyperelastic material, the partial first Piola-Kirchhoff stress
of collagen is Pc = ρc∂ψc/∂Fe. Here, Fe = FFg−1 is the
elastic deformation gradient, and Fg is the growth deforma-
tion gradient, of collagen. Along the lines of Equation (4), if
we were considering unidirectional growth of collagen along
a unit vector e, we have Fg = ρc

ρc
0
e⊗ e, with ρc

0 denoting the
initial concentration of collagen at the point.

The mechanical response (function) of tendons in ten-
sion is determined by their most important structural com-
ponent, highly oriented fibrils of collagen. In our prelim-
inary formulation, the strain energy density for the colla-
gen has been obtained from hierarchical multi-scale consid-
erations based upon an entropic elasticity-based worm-like
chain (WLC) model (Kratky and Porod, 1949). The WLC
model has been widely used for long chain single molecules,
most prominently for DNA (Marko and Siggia, 1995; Rief
et al, 1997; Bustamante et al, 2003), and recently for the
collagen monomer (Sun et al, 2002). The central parameters
of this model are the chain’s contour length, L, and persis-
tence length, A. The latter is a measure of its stiffness and
given by A = χ/kθ , where χ is the bending rigidity, k is
Boltzmann’s constant and θ is the temperature (Landau and
Lifshitz, 1951). We have fitted the WLC response function
derived by Marko and Siggia (1995) to the data of Graham
et al (2004) with A = 6 nm and L = 3480 nm. This is to be

compared with A = 14.5 nm and L = 309 nm, reported by
Sun et al (2002), for a single collagen molecule. Taken to-
gether, these results demonstrate that the WLC analysis cor-
rectly predicts a collagen fibril to be longer and slightly more
compliant than its constituent molecule due to compliant in-
termolecular cross-links in a fibril. To model the possibility
of a collagen network structure, the WLC model has been
embedded as a single constituent chain of an eight-chain
model (Arruda and Boyce, 1993), depicted in Figure 5. Ho-
mogenisation via averaging then leads to a continuum strain
energy function, ψc

F (the strain energy is one of the additive
contributions to the Helmholtz free energy, ψc):

ρ̃cψc
F(Fe) =

Nkθ
4A

(
r2

2L
+

L
4(1− r/L)

− r
4

)

+
γ
β

(Je−2β −1)+ γ1 : (Ce −1)

− Nkθ
4
√

2L/A

(√
2A
L

+
1

4(1−
√

2A/L)
− 1

4

)
Z,

Z = log(λ a2
1 λ b2

2 λ c2
3 ).

(8)

Here, ρ̃c is the mass density of collagen, N is the density
of chains, and a,b and c are lengths of the unit cell sides
aligned with the principal stretch directions. The material
model is isotropic only if a = b = c.

The elastic stretches along the unit cell axes are respec-
tively denoted by λ1,λ2 and λ3. Ce = FeT

Fe is the elas-
tic right Cauchy-Green strain tensor of collagen and 1 is
the second-order isotropic tensor. The factors γ and β con-
trol bulk compressibility that models the extra-cellular fluid
bound to proteoglycans. The end to end chain length is given
by r = 1

2

√
a2λ 2

1 +b2λ 2
2 + c2λ 2

3 , where λI =
√

NI ·CeNI , and
NI , I = 1,2,3 are the unit vectors along the three unit cell
axes, respectively. The parameters introduced in (8) have
been fit to data from Bischoff et al (2002) for our prelimi-
nary computations that appear below in Section 4.

3.2 A nearly incompressible ideal fluid

In our preliminary work, the fluid phase is treated as a nearly
incompressible, ideal, i.e., inviscid, fluid. This is modelled
by utilising an internal energy density function whose de-
pendence on det(Fef

) is quadratic, and the resulting partial
Cauchy stress in the fluid is

σ f = det(Fef
)−1PfFefT

= h(ρ f)1, (9)

where a large value of h ensures near-incompressibility.

3.2.1 Response of the fluid in tension; cavitation

The response of the ideal fluid, as defined by Equation (9),
does not explicitly distinguish between the cases where the
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Fig. 5 The eight-chain model incorporating worm-like chains.

fluid is subjected to tension or compression, i.e., whether
det(Fef

) R 1. When the fluid phase is subjected to compres-
sion, being (nearly) incompressible, it can develop compres-
sive stresses without bound and is modelled accurately. Un-
der tension, in actuality, the fluid can develop at most a small
tensile stress, and the bulk of the tensile stiffness arises from
the collagen phase.This is not accurately represented by us-
ing (9), which predicts a tensile response in fluid similar to
the compressive response.

This is corrected by limiting det(Fef
) ≤ 1, i.e., limiting

the usage of the fluid stress response law only to the com-
pressive case. In order to do this consistently, we first intro-
duce an additional component to the mixture, a void species,
v. Now, we only require that the product det(F ef

)det(Fv) be
equal to the determinant of the local deformation gradient. If
this product tends to be ≥ 1, we limit the det(Fef

) to 1, and
the remainder is carried in det(Fv). Otherwise, det(Fv) is
defined to be 1. In this manner, we allow the system to cav-
itate (det(Fv) > 1), and this additionally gives us a measure
of the unsaturation in the system.

3.3 Constitutive relations for fluxes

The constitutive relation for the flux of extra-cellular fluid
relative to the collagen takes the following form,

Mf = Df
(

ρ f
0FT g+FT DIV

[
Pf
]
−GRAD

[
ef −θη f

])
,

(10)
where Df is the positive semi-definite mobility of the fluid
and isothermal conditions are assumed to approximate the
physiological ones. Experimentally determined transport co-
efficients (e.g. for rat tail skin (Swartz et al, 1999) and rabbit
Achilles tendons (Han et al, 2000)) are used for the fluid
mobility values. The terms in the parenthesis on the right
hand-side of Equation (10) sum up to give the total driv-
ing force for transport. The first term is the contribution due
to gravitational acceleration. The second term arises from
stress divergence; for instance, fluid moves down a compres-
sive pressure gradient, which is Darcy’s Law. The third term
can be thought of as the gradient of a chemical potential.
The included entropy gradient in this term results in classi-
cal Fickean diffusion if only mixing entropy exists. For a de-
tailed derivation and discussion of Equation (10), the reader
is directed to Garikipati et al (2004).

Additionally, during the course of implementing the the-
ory and solving initial-boundary value problems, some re-
finements to the above constitutive relation have made them-
selves apparent. One such change is the splitting of perme-
ability (stress-gradient driven) and diffusion (Fickean) mo-
bilities, which proves useful, as seen in the following sub-
section.

3.3.1 Saturation and Fickean diffusion

Only when pores are unsaturated are there multiple config-
urations available to the fluid molecules at a fixed fluid con-
centration. This leads to a non-zero mixing entropy. In con-
trast, if saturated, there is only a single available configura-
tion (degeneracy), resulting in zero mixing entropy. Conse-
quently, Fickean diffusion, which arises from the gradient of
mixing entropy can exist only in the unsaturated case. Even
so, a saturated pore structure can demonstrate concentra-
tion gradient-dependent transport phenomenologically: The
fluid stress depends on fluid concentration, see Equation (9),
and fluid stress gradient-driven flux appears as concentration
gradient-driven flux.

The saturation dependence of Fickean diffusion is mod-
elled by using the measure of saturation introduced in Sub-
section 2.2.1, and switching on the diffusion (Fickean) mo-
bility introduced above only if the tissue is unsaturated.

3.3.2 Transport of solute species

The numerous dissolved solute species (proteins, sugars, nu-
trients, . . . ), denoted by s, undergo large scale transport pri-
marily by being advected along with the perfusing fluid. In
addition to this, they are also capable of undergoing trans-
port relative to the fluid. Toward this end, an additional ve-
locity split of the form V s = Ṽ s +V f, is introduced, where Ṽ s

now denotes the velocity of the solute relative to the fluid.
The constitutive relation for the corresponding flux, denoted
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Fig. 6 Only unsaturated tissues can undergo Fickean diffusion.

by M̃s, has the following form similar to Equation (10) de-
fined for the fluid flux.

M̃
s
= Ds (ρs

0FTg−GRAD [es −θη s]
)
, (11)

where Ds is the positive semi-definite mobility of the solute
relative to the fluid, and again, isothermal conditions are as-
sumed to approximate the physiological ones. Being in so-
lution, this phase does not bear appreciable stress, and the
stress divergence term is absent from the constitutive rela-
tion.

3.3.3 Objectivity and the contribution from acceleration

In our earlier treatment (Garikipati et al, 2004), the con-
stitutive relation for the fluid flux had a driving force con-
tribution arising from the acceleration of the solid phase,
−ρ f

0FT ∂V
∂ t . This term, motivated by the reduced dissipation

inequality, does not violate the Second Law and supports
our intuitive understanding that accelerating the solid skele-
ton in one direction must result in an inertial driving force
on the fluid in the opposite direction. However, as defined,
this acceleration is obtained by the time differentiation of
kinematic quantities3, and does not transform in an objective

3 and not in terms of acceleration relative to fixed stars, for e.g., as
discussed in Truesdell and Noll (1965).

(frame-indifferent) manner under a change of frame. Unlike
the superficially similar term arising from the gravity vec-
tor4, the acceleration term presents an improper dependence
on the frame of the observer. Thus, its use in constitutive re-
lations is inappropriate, and the term has been dropped in
Equation (10).

3.3.4 Incompressible fluid in a porous solid

Upon incorporation of the velocity split described in Subsec-
tion 3.3.2, the resulting mass transport equation for the so-
lute species is of an advection-diffusion form. In the hyper-
bolic limit, where advection dominates, spatial oscillations
are observed in numerical solutions of this equation (Brooks
and Hughes, 1982; Hughes et al, 1987). However, the form
in which the equation is obtained is not amenable for the ap-
plication of standard stabilisation techniques (Hughes et al,
1987). Additionally, though the (near) incompressibility of
the fluid phase is imbibed in the balance of linear momen-
tum, it has not yet been explicitly incorporated into the trans-
port equations. This subsection proceeds to impose the fluid
incompressibility condition and deduces implications for the
solute mass transport equation, including a crucial simplifi-
cation allowing for its straightforward numerical stabilisa-
tion.

From Equation (3), the local form of the balance of mass
for the fluid species (recalling that Π f = 0) in the current
configuration is

dρ f

dt
= −div

[
m f ]−ρ f div [v] . (12)

In order to impose the incompressibility of the fluid, we first
denote by ρ f

0ini
the initial value of the fluid reference density,

and recognise that

ρ f
0 (X ,0) =: ρ f

0ini
(X)

= ρ f
ini(x ·ϕ)J(X)

=
ρ f (x ·ϕ, t)

J fg(X , t)
J(X , t)

= ρ f (x ·ϕ, t)��>
≈ 1 for all time t

J fe(X , t),

(13)

which results in a very high mobility in response to a pres-
sure gradient, due to near incompressibility. Restricting the
argument to a non-growing solid, i.e. F in the solid and F fe

are uniform,

∂
∂ t

(
ρ f

0ini
(X)
)
≡ 0 ⇒ ∂

∂ t

(
ρ f (x ·ϕ, t)

)
= 0, (14)

which is the hidden implication of our assumption that F
is the deformation gradient of the system and of the solid

4 where every observer has an implicit knowledge of the direction-
ality of the field relative to a fixed frame, allowing it to transform ob-
jectively.
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skeleton. This leads to ∂ρ f

∂ t = 0, as seen in our numerical
simulations. We now proceed to treat our fluid mass trans-
port at steady state. Rewriting the flux mf from Equation (12)
as the product ρ fvf and using the result derived above,

0 =
∂ρ f

∂ t

∣∣∣∣
X

= −div
[
ρ f v f ]−ρ f div [v] .

(15)

Returning to (3), we introduce the additional velocity split,
V s = Ṽ s +V f , and now write the balance mass for a solute
species as

dρs

dt
= πs −div

[
m̃s +

ρs

ρ f m f
]
−ρsdiv[v]

=
ρs

ρ f




�����������:0
−div

[
ρ f v f ]−ρ f div[v]




+πs −div
[
m̃s
]
−m f ·grad

[
ρs

ρ f

]
.

(16)

Thus, using the incompressibility condition (15), we get
the simplified form of the balance of mass for an arbitrary
solute species, s,

dρs

dt
= πs −div

[
m̃s
]
− m f ·grad [ρs]

ρ f +
ρsm f ·grad

[
ρ f
]

ρ f 2 .

(17)
This is now in standard advective-diffusion form, and is well
suited for stabilisation schemes such as the streamline up-
wind Petrov-Galerkin (SUPG) method (see, for e.g., Hughes
et al (1987)) described briefly below.

3.3.5 Stabilisation of the simplified solute transport
equation

SUPG methods are a class of finite element methods, origi-
nally developed for the scalar advection-diffusion equation,
which have proven efficient in the solution of a variety of
flow problems (Hughes, 1987). The standard form of the
scalar advection-diffusion is

∂ϕ
∂ t

+a ·grad [ϕ] = div [κ grad [ϕ]]+ f , (18)

where ϕ = ϕ(x, t) is a scalar field, a is the advective velocity,
κ is a diffusivity and f is a volumetric source term. Here, if
κ > 0, we have the parabolic case and if κ = 0, we have the
hyperbolic case. In terms of numerics, the greatest challenge
is posed when the element Peclet number,

α = max |a|h2κ
, (19)

is large; h being the mesh size. Figure 7 shows the spatial in-
stability in the numerical solution of a simple 2 dimensional
case of (18), where the element Peclet number is large.

Recalling that the material time derivative on the left-
hand side of Equation (17) is defined as follows,

dρs

dt
:= ∂ρs

∂ t
+grad [ρs] · v, (20)

where v is the material velocity of the solid skeleton, we
compare the forms of (17) and (18) to determine the nature
of the abstract quantities a and f for our problem.

In contrast to the standard Galerkin method, the SUPG
offers a greater control over the advective-derivative term
by adding an artificial diffusion which acts only along the
direction of the streamline. The key idea here is that this
stabilising control is introduced within a weighted residual
format and maintains consistency (Hughes, 1987). In weak
form, the method is defined as follows

∫

Ω

(
wha ·grad

[
ϕh
]
+grad

[
wh
]
·κ grad

[
ϕh
])

dΩ

+
nel

∑
e=1

∫

Ωe
τa ·grad

[
wh
](

a ·grad
[
ϕh
]
−div

[
κ grad

[
ϕh
]])

dΩ

=
∫

Ω
wh f dΩ +

∫

Γh
whh dΓ +

nel

∑
e=1

∫

Ωe
τa ·grad

[
wh
]

f dΩ

(21)

where Γh is the Neumann boundary, and this equation intro-
duces a numerical stabilisation parameter τ , which we have
calculated from the L2 norms of element level matrices, as
described in Tezduyar and Sathe (2003). In Figure 8, the
stable numerical solution of the sample high Peclet number
problem introduced previously is shown after the introduc-
tion of this artificial diffusion.

3.4 Nature of the sources

There exists a large body of literature, Cowin and Hegedus
(1976); Epstein and Maugin (2000); Ambrosi and Mollica
(2002), that addresses growth in biological tissue mainly
based upon a single species undergoing transport and pro-
duction/annihilation. In actuality, growth depends on cas-
cades of complex biochemical reactions involving several
species, and additionally involves intimate coupling between
mass transfer, biochemistry and mechanics. An example of
this chemo-mechanical coupling is described in Provenzano
et al (2003).

The modelling approach followed in this work is to se-
lect appropriate functional forms of the source terms for col-
lagen, Π c, and the solutes, Π s, to suitably encapsulate the
complexity of the biochemistry we aim to capture. In our
earlier exposition (Garikipati et al, 2004), we utilised simple
first order chemical kinetics to define Π c. This has now been
expanded to model more physiologically relevant forms of
biochemistry, and the following subsections discuss two ex-
amples. We are currently looking at combinations of these
sources, and aim to calibrate our choices from tendon growth
experiments.
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turned off
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turned on

3.4.1 Enzyme kinetics

Michaelis-Menten enzyme kinetics (see, for e.g., Sengers
et al (2004)) involves a two-step reaction with the collagen
and solute production terms given by

Π s =
(kmaxρs)

(ρs
m +ρs)

ρcell, Π c = −Π s, (22)

where ρcell is the concentration of fibroblasts, kmax is the
maximum value of the solute production reaction rate con-
stant, and ρ s

m is half the solute concentration corresponding
to kmax. Denoting the two-stage reaction, involving an en-
zyme, substrate and a product, by E + S

k1−−⇀↽−−
k−1

ES k2−→ E + P,

it can be shown that ρ s
m =

(k2+k−1)
k1

. Figure 9 shows a repre-
sentative plot of initial reaction rate vs. the solute concentra-
tion.

Cm

Vmax/2

Vmax

Solute Concentration, [S] →

In
iti

al
 R

at
e,

 v
 →

Fig. 9 Initial reaction rate vs. solute concentration in enzyme kinetics.

3.4.2 Strain energy dependent collagen production

The strain energy dependent source term was originally pro-
posed in the context of bone growth (Harrigan and Hamilton,
1993) and induces growth at a point when the energy density
deviates from a basal value, suitably weighted by a relative
density ratio. Written for collagen, it has the form

Π c = (
ρc

0
ρc

0ini

)−mψF −ψ∗
F , (23)

where ψ∗
F is a reference strain energy density.

4 Numerical examples

The theory presented in the preceding sections results in
non-linear coupled partial differential equations that need to
be solved. A finite element formulation employing a stag-
gered scheme based upon operator splits Armero (1999);
Garikipati and Rao (2001) has been implemented in FEAP

Taylor (1999) to solve the coupled problem. The basic so-
lution scheme involves keeping one of the fields, say the
displacement field, fixed, while solving for another, the con-
centration field from the mass transport problem in this case.
The resulting concentration field is then fixed to solve the
mechanics problem. This procedure is repeated until the re-
sulting fields satisfy the differential equations within some
suitable magnitude of an error norm.

The transient solution for the mechanics problem is ob-
tained using energy-conserving schemes as detailed in Simo
and Tarnow (1992). Backward Euler is used as the time-
stepping algorithm for mass transport. Non-linear projec-
tion methods (Simo et al, 1985) are used to treat the near-
incompressibility imposed by water. Mixed methods, as de-
scribed in Garikipati and Rao (2001), are used for stress (and
strain) gradient driven fluxes.

The following example aims to demonstrate the math-
ematical formulation and aspects of the coupled phenom-
ena as the tissue grows. The model geometry, based on the
engineered tendon constructs (see Figure 10), is a cylinder
12 mm in length and 1 mm2 in cross-sectional area. Only
two phases—fluid and collagen—are included for the mass
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Fig. 10 Engineered tendon constructs Calve et al (2004).

transport and mechanics. The collagen is represented by the
anisotropic worm-like chain model outlined previously (see
Section 3.1) and the fluid phase is modelled as ideal and
nearly incompressible. The parameters used in the analysis
are as presented in Table 2.1. The values chosen are repre-
sentative of the kinds of biological systems we are working
with. The classes of initial and boundary conditions imposed
are also based on physical experiments.

Since we only have two species and we want to demon-
strate growth, an “artificial” fluid sink Π f is introduced fol-
lowing simple first order kinetics. The collagen source will
be the negative of the fluid sink: Π f =−kf(ρ f

0−ρ f
0ini

); Π c =

−Π f, where kf is the reaction rate, and ρ f
0ini

is the initial con-
centration of fluid. When ρ f

0 > ρ f
0ini

, this acts as a source for
collagen. The mixing entropy of fluid in the mixture with
collagen is written as η f

mix = − k
M f log(

ρ f
0

ρ0
), where M f is the

molecular weight of the fluid.
The boundary conditions simply corresponding to im-

mersing the tendon in a nutrient rich bath. The initial col-
lagen concentration is 500 kg/m3 everywhere and the fluid
concentration is 400 kg/m3 everywhere. This is exposed to
a bath where the fluid concentration is 500 kg/m3, so with
these concentration boundary conditions set, nutrient rich
fluid rushes into the tissue, and growth occurs to form more
collagen. The following plots present a few results from the
analysis.

4.1 Effects of non-physical boundary conditions

4.2 The constriction induced growth problem

4.3 A swelling problem

Figure 11 shows the initial collagen concentration in the ten-
don. After it has been immersed in a nutrient rich bath for
half an hour, the tendon has grown and the collagen con-
centration is now higher as seen in Figure 12. On perform-
ing a simple uniaxial tension test on the tendon before and
after growth, it is observed that the grown tissue is stiffer
and stronger as seen in Figure 13. Additionally, the swelling
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Fig. 11 The collagen concentration (kg/m3) initially.
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Fig. 12 The collagen concentration (kg/m3) after 1800 seconds.
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Fig. 13 The stress (Pa) vs extension (m) curves before and after
growth.

of the tendon as it is immersed in the bath takes place in
two clear regimes as seen in Figure 14. There as an initial
rapid swelling in a diffusion dominated regime, and a slower
growth dominated swelling later on.

4.4 An enzyme-kinetics based multiphasic problem

5 Conclusion

In this paper, we have discussed in detail a number of en-
hancements to our original growth formulation presented in
Garikipati et al (2004). That formulation has demonstrated
its versatility and power as a platform for posing a very wide
range of questions on the biophysics of growth. Some issues,
such as saturation, incompressibility of the fluid species and
its influence upon the tissue response, and the roles of bio-
chemical and strain energy-dependent source terms are spe-
cific to soft biological tissues. We note, however, that other
issues are also applicable to a number of systems with a
porous solid, transported fluid and reacting solutes. Included
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Fig. 14 The volume of the tendon (m3) evolving with time.

in these are issues of current versus reference configura-
tions for mass transport, swelling, Fickean diffusion, fluid
response in compression and tension, cavitation, and role of
different mobilities.

These issues have been resolved using simple, but pow-
erful arguments that could be posed easily in the framework
derived in Garikipati et al (2004). However, the interactions
engendered in the coupled reaction-transport-mechanics sys-
tem are complex, as borne out by the numerical examples in
Section 4. The treatment of these issues has led to a formu-
lation more suited to the biophysics of growing soft tissue,
making progress toward our broader goal of applying it to
applications such as the study of wound healing, pathologi-
cal hypertrophy/atrophy, as well as drug efficacy and inter-
action.
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